[机器学习/深度学习] 深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南,全套视频教程学习资料通过百度云网盘下载

[机器学习/深度学习] 深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南,全套视频教程学习资料通过百度云网盘下载

资源详情

                      [机器学习/深度学习] 深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南
===============课程目录===============



├第01课.机器学习解决问题综述课.mp4
├第03课_kaggle案例实战班.mp4
├第04课_kaggle案例实战班.mp4
├第05课_kaggle案例实战班.mp4
├第06课_kaggle案例实战班.mp4
├第07课_kaggle案例实战班.mp4
├第08课_kaggle案例实战班.mp4
├第二节.mp4
├<代码>
│  ├
│  │  ├blending.py
│  │  ├cs228-python-tutorial.ipynb
│  │  ├Feature_engineering_and_model_tuning.zip
│  │  ├
│  │  │  ├
│  │  │  │  ├Feature Engineering.ipynb
│  │  │  │  ├Test.csv
│  │  │  │  ├test_modified.csv
│  │  │  │  ├Train.csv
│  │  │  │  ├train_modified.csv
│  │  │  │  ├XGBoost models tuning.ipynb
│  │  │  │  ├<.ipynb_checkpoints>
│  │  │  │  │  ├Feature Engineering-checkpoint.ipynb
│  │  │  │  │  └XGBoost models tuning-checkpoint.ipynb
│  │  │  ├
│  │  │  │  ├test.csv
│  │  │  │  ├Titanic.ipynb
│  │  │  │  ├train.csv
│  │  │  │  ├<.ipynb_checkpoints>
│  │  │  │  │  └Titanic-checkpoint.ipynb
│  │  │  ├
│  │  │  │  ├Kaggle_Bicycle_Example.ipynb
│  │  │  │  ├kaggle_bike_competition_train.csv
│  │  │  │  ├<.ipynb_checkpoints>
│  │  │  │  │  └Kaggle_Bicycle_Example-checkpoint.ipynb
│  │  │  │  ├
│  │  │  │  │  ├Kaggle_Bicycle_Example_34_0.png
│  │  │  │  │  ├Kaggle_Bicycle_Example_42_0.png
│  │  │  │  │  ├Kaggle_Bicycle_Example_43_0.png
│  │  │  │  │  ├Kaggle_Bicycle_Example_44_0.png
│  │  │  │  │  ├Kaggle_Bicycle_Example_45_0.png
│  │  │  │  │  ├Kaggle_Bicycle_Example_46_1.png
│  │  │  │  │  ├Kaggle_Bicycle_Example_47_1.png
│  │  │  │  │  └Kaggle_Bicycle_Example_49_1.png
│  ├
│  │  ├
│  │  │  ├data_description.txt
│  │  │  ├<_ipynb_checkpoints>
│  │  │  ├
│  │  │  │  ├sample_submission.csv
│  │  │  │  ├test.csv
│  │  │  │  └train.csv
│  │  │  ├
│  │  │  │  ├house_price.html
│  │  │  │  ├house_price.ipynb
│  │  │  │  ├house_price_advanced.html
│  │  │  │  ├house_price_advanced.ipynb
│  │  │  │  ├<.ipynb_checkpoints>
│  │  │  │  │  ├house_price_advanced-checkpoint.ipynb
│  │  │  │  │  └house_price-checkpoint.ipynb
│  │  ├
│  │  │  ├<_ipynb_checkpoints>
│  │  │  ├
│  │  │  │  ├Combined_News_DJIA.csv
│  │  │  │  ├DJIA_table.csv
│  │  │  │  └RedditNews.csv
│  │  │  ├
│  │  │  │  ├news_stock.html
│  │  │  │  ├news_stock.ipynb
│  │  │  │  ├<.ipynb_checkpoints>
│  │  │  │  │  └news_stock-checkpoint.ipynb
│  ├
│  │  ├A危azu-CTR-Prediction-LR.zip
│  │  ├feature.search
│  │  ├feature.search_ads
│  │  ├feature_map.search_ads
│  │  ├generate_train_feature_mapper.py
│  │  ├generate_train_feature_reducer.py
│  │  ├kaggle-A危azu-rank1.zip
│  │  ├kaggle-A危azu-rank2.zip
│  │  ├search_ads_feature.sample
│  │  ├search_click_data.sample
│  │  ├Spark-Criteo-CTR-Prediction.ipynb
│  │  └xgb_ads.conf
│  ├
│  │  ├
│  │  ├
│  │  │  ├news_stock.html
│  │  │  ├news_stock_advanced.html
│  │  │  ├search relevance.ipynb
│  │  │  ├search relevance_advanced.ipynb
│  │  │  ├search+relevance.html
│  │  │  ├search+relevance_advanced.html
│  │  │  ├<.ipynb_checkpoints>
│  │  │  │  ├search relevance_advanced-checkpoint.ipynb
│  │  │  │  └search relevance-checkpoint.ipynb
│  ├
│  │  ├energy_forecasting_notebooks.zip
│  │  └subway_prediction_notebook.zip
│  ├
│  │  ├cat_dog.html
│  │  ├char_rnn.html
│  │  ├image_search.html
│  │  ├Kaggle第06课:走起~深度学习.pdf
│  │  ├Kaggle第06课:走起~深度学习.pptx
│  │  ├news_stock_advanced.html
│  │  ├word_rnn.html
│  │  ├
│  │  │  ├chi_square.png
│  │  │  └RGBHistogram.jpg
│  │  ├<猫狗的数据>
│  │  │  ├cats-vs-dogs.txt
│  │  │  ├sample_submission.csv
│  │  │  ├test.zip
│  │  │  └train.zip
│  ├
│  │  ├data.zip
│  │  ├Kaggle event recommendation competition.ipynb
│  │  ├kaggle-event-recommendation-rank1.zip
│  │  └Rossmann_Store_Sales_competition.ipynb
│  ├
│  │  └PPD_RiskControl_Competition.zip
├<课件>
│  ├Kaggle第05课:能源预测与分配问题.pdf
│  ├Kaggle第06课:走起~深度学习.pdf
│  ├Kaggle第06课:走起~深度学习.pptx
│  ├
│  │  ├Kaggle第01课:机器学习算法、工具与流程概述.pdf
│  │  └分享的链接.txt
│  ├
│  │  └Kaggle第02课:经济金融相关问题.pdf
│  ├
│  │  ├kaggle-2014-criteo.pdf
│  │  ├kaggle-A危azu.pdf
│  │  ├predicting-clicks-facebook.pdf
│  │  ├阿里妈妈:大数据下的广告排序技术及实践.pdf
│  │  ├百度凤巢:DNN在凤巢CTR预估中的应用.pdf
│  │  ├从FM到FFM.pdf
│  │  ├第3课--排序与CTR预估.pdf
│  │  ├京东电商广告和推荐系统的机器学习系统实践.pdf
│  │  └腾讯广点通:效果广告中的机器学习技术.pdf
│  ├
│  │  └Kaggle第四课.pdf
│  ├
│  │  └第5课:能源预测与分配问题.pdf
│  ├
│  │  └第7课:推荐与销量预测相关问题.pdf
│  ├
│  │  ├第8课:金融风控问题.pdf
│  │  └金融风控大赛解决方案.pdf

下载地址

链接 http://pan.baidu.com/s/1jI9WJiu 密码 vvlg 解压密码 www.santongit.com

0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论