深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南,全套视频教程学习资料通过百度云网盘下载

深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南,全套视频教程学习资料通过百度云网盘下载

资源详情

                      深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南

├第01课.机器学习解决问题综述课.mp4

├第03课_kaggle案例实战班.mp4

├第04课_kaggle案例实战班.mp4

├第05课_kaggle案例实战班.mp4

├第06课_kaggle案例实战班.mp4

├第07课_kaggle案例实战班.mp4

├第08课_kaggle案例实战班.mp4

├第二节.mp4

├<代码>

│  ├

│  │  ├blending.py

│  │  ├cs228-python-tutorial.ipynb

│  │  ├Feature_engineering_and_model_tuning.zip

│  │  ├

│  │  │  ├

│  │  │  │  ├Feature Engineering.ipynb

│  │  │  │  ├Test.csv

│  │  │  │  ├test_modified.csv

│  │  │  │  ├Train.csv

│  │  │  │  ├train_modified.csv

│  │  │  │  ├XGBoost models tuning.ipynb

│  │  │  │  ├<.ipynb_checkpoints>

│  │  │  │  │  ├Feature Engineering-checkpoint.ipynb

│  │  │  │  │  └XGBoost models tuning-checkpoint.ipynb

│  │  │  ├

│  │  │  │  ├test.csv

│  │  │  │  ├Titanic.ipynb

│  │  │  │  ├train.csv

│  │  │  │  ├<.ipynb_checkpoints>

│  │  │  │  │  └Titanic-checkpoint.ipynb

│  │  │  ├

│  │  │  │  ├Kaggle_Bicycle_Example.ipynb

│  │  │  │  ├kaggle_bike_competition_train.csv

│  │  │  │  ├<.ipynb_checkpoints>

│  │  │  │  │  └Kaggle_Bicycle_Example-checkpoint.ipynb

│  │  │  │  ├

│  │  │  │  │  ├Kaggle_Bicycle_Example_34_0.png

│  │  │  │  │  ├Kaggle_Bicycle_Example_42_0.png

│  │  │  │  │  ├Kaggle_Bicycle_Example_43_0.png

│  │  │  │  │  ├Kaggle_Bicycle_Example_44_0.png

│  │  │  │  │  ├Kaggle_Bicycle_Example_45_0.png

│  │  │  │  │  ├Kaggle_Bicycle_Example_46_1.png

│  │  │  │  │  ├Kaggle_Bicycle_Example_47_1.png

│  │  │  │  │  └Kaggle_Bicycle_Example_49_1.png

│  ├

│  │  ├

│  │  │  ├data_description.txt

│  │  │  ├<_ipynb_checkpoints>

│  │  │  ├

│  │  │  │  ├sample_submission.csv

│  │  │  │  ├test.csv

│  │  │  │  └train.csv

│  │  │  ├

│  │  │  │  ├house_price.html

│  │  │  │  ├house_price.ipynb

│  │  │  │  ├house_price_advanced.html

│  │  │  │  ├house_price_advanced.ipynb

│  │  │  │  ├<.ipynb_checkpoints>

│  │  │  │  │  ├house_price_advanced-checkpoint.ipynb

│  │  │  │  │  └house_price-checkpoint.ipynb

│  │  ├

│  │  │  ├<_ipynb_checkpoints>

│  │  │  ├

│  │  │  │  ├Combined_News_DJIA.csv

│  │  │  │  ├DJIA_table.csv

│  │  │  │  └RedditNews.csv

│  │  │  ├

│  │  │  │  ├news_stock.html

│  │  │  │  ├news_stock.ipynb

│  │  │  │  ├<.ipynb_checkpoints>

│  │  │  │  │  └news_stock-checkpoint.ipynb

│  ├

│  │  ├A危azu-CTR-Prediction-LR.zip

│  │  ├feature.search

│  │  ├feature.search_ads

│  │  ├feature_map.search_ads

│  │  ├generate_train_feature_mapper.py

│  │  ├generate_train_feature_reducer.py

│  │  ├kaggle-A危azu-rank1.zip

│  │  ├kaggle-A危azu-rank2.zip

│  │  ├search_ads_feature.sample

│  │  ├search_click_data.sample

│  │  ├Spark-Criteo-CTR-Prediction.ipynb

│  │  └xgb_ads.conf

│  ├

│  │  ├

│  │  ├

│  │  │  ├news_stock.html

│  │  │  ├news_stock_advanced.html

│  │  │  ├search relevance.ipynb

│  │  │  ├search relevance_advanced.ipynb

│  │  │  ├search+relevance.html

│  │  │  ├search+relevance_advanced.html

│  │  │  ├<.ipynb_checkpoints>

│  │  │  │  ├search relevance_advanced-checkpoint.ipynb

│  │  │  │  └search relevance-checkpoint.ipynb

│  ├

│  │  ├energy_forecasting_notebooks.zip

│  │  └subway_prediction_notebook.zip

│  ├

│  │  ├cat_dog.html

│  │  ├char_rnn.html

│  │  ├image_search.html

│  │  ├Kaggle第06课:走起~深度学习.pdf

│  │  ├Kaggle第06课:走起~深度学习.pptx

│  │  ├news_stock_advanced.html

│  │  ├word_rnn.html

│  │  ├

│  │  │  ├chi_square.png

│  │  │  └RGBHistogram.jpg

│  │  ├<猫狗的数据>

│  │  │  ├cats-vs-dogs.txt

│  │  │  ├sample_submission.csv

│  │  │  ├test.zip

│  │  │  └train.zip

│  ├

│  │  ├data.zip

│  │  ├Kaggle event recommendation competition.ipynb

│  │  ├kaggle-event-recommendation-rank1.zip

│  │  └Rossmann_Store_Sales_competition.ipynb

│  ├

│  │  └PPD_RiskControl_Competition.zip

├<课件>

│  ├Kaggle第05课:能源预测与分配问题.pdf

│  ├Kaggle第06课:走起~深度学习.pdf

│  ├Kaggle第06课:走起~深度学习.pptx

│  ├

│  │  ├Kaggle第01课:机器学习算法、工具与流程概述.pdf

│  │  └分享的链接.txt

│  ├

│  │  └Kaggle第02课:经济金融相关问题.pdf

│  ├

│  │  ├kaggle-2014-criteo.pdf

│  │  ├kaggle-A危azu.pdf

│  │  ├predicting-clicks-facebook.pdf

│  │  ├阿里妈妈:大数据下的广告排序技术及实践.pdf

│  │  ├百度凤巢:DNN在凤巢CTR预估中的应用.pdf

│  │  ├从FM到FFM.pdf

│  │  ├第3课--排序与CTR预估.pdf

│  │  ├京东电商广告和推荐系统的机器学习系统实践.pdf

│  │  └腾讯广点通:效果广告中的机器学习技术.pdf

│  ├

│  │  └Kaggle第四课.pdf

│  ├

│  │  └第5课:能源预测与分配问题.pdf

│  ├

│  │  └第7课:推荐与销量预测相关问题.pdf

│  ├

│  │  ├第8课:金融风控问题.pdf

│  │  └金融风控大赛解决方案.pdf

下载地址

链接 http://pan.baidu.com/s/1jI9WJiu 密码 vvlg 解压密码 www.santongit.com

Kin @ ITM资源 2021/4/23

深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南,全套视频教程学习资料通过百度云网盘下载

资源详情 ├第01课.机器学习解决问题综述课.mp4 ├第03课_kaggle案例实战班.mp4 ├第04课_kaggle案例实战班.mp4 ├第05课_kaggle案例实战班.mp4 ├第06课_kaggle案例实战班.mp4 ├第07课_kaggle案例实战班.mp4 ├第08课_kaggle案例实战班.mp4 ├第二节.mp4 ├<代码> │  ├ │  │  ├blending.py │  │  ├cs228-python-tutorial.ipynb │  │  ├Feature_engineering_and_model_tuning.zip │  │  ├ │  │  │  ├ │  │  │  │  ├Feature Engineering.ipynb │  │  │  │  ├Test.csv │  │  │  │  ├test_modified.csv │  │  │  │  ├Train.csv │  │  │  │  ├train_modified.csv │  │  │  │  ├XGBoost models tuning.ipynb │  │  │  │  ├<.ipynb_checkpoints> │  │  │  │  │  ├Feature Engineering-checkpoint.ipynb │  │  │  │  │  └XGBoost models tuning-checkpoint.ipynb │  │  │  ├ │  │  │  │  ├test.csv │  │  │  │  ├Titanic.ipynb │  │  │  │  ├train.csv │  │  │  │  ├<.ipynb_checkpoints> │  │  │  │  │  └Titanic-checkpoint.ipynb │  │  │  ├ │  │  │  │  ├Kaggle_Bicycle_Example.ipynb │  │  │  │  ├kaggle_bike_competition_train.csv │  │  │  │  ├<.ipynb_checkpoints> │  │  │  │  │  └Kaggle_Bicycle_Example-checkpoint.ipynb │  │  │  │  ├ │  │  │  │  │  ├Kaggle_Bicycle_Example_34_0.png │  │  │  │  │  ├Kaggle_Bicycle_Example_42_0.png │  │  │  │  │  ├Kaggle_Bicycle_Example_43_0.png │  │  │  │  │  ├Kaggle_Bicycle_Example_44_0.png │  │  │  │  │  ├Kaggle_Bicycle_Example_45_0.png │  │  │  │  │  ├Kaggle_Bicycle_Example_46_1.png │  │  │  │  │  ├Kaggle_Bicycle_Example_47_1.png │  │  │  │  │  └Kaggle_Bicycle_Example_49_1.png │  ├ │  │  ├ │  │  │  ├data_description.txt │  │  │  ├<_ipynb_checkpoints> │  │  │  ├ │  │  │  │  ├sample_submission.csv │  │  │  │  ├test.csv │  │  │  │  └train.csv │  │  │  ├ │  │  │  │  ├house_price.html │  │  │  │  ├house_price.ipynb │  │  │  │  ├house_price_advanced.html │  │  │  │  ├house_price_advanced.ipynb │  │  │  │  ├<.ipynb_checkpoints> │  │  │  │  │  ├house_price_advanced-checkpoint.ipynb │  │  │  │  │  └house_price-checkpoint.ipynb │  │  ├ │  │  │  ├<_ipynb_checkpoints> │  │  │  ├ │  │  │  │  ├Combined_News_DJIA.csv │  │  │  │  ├DJIA_table.csv │  │  │  │  └RedditNews.csv │  │  │  ├ │  │  │  │  ├news_stock.html │  │  │  │  ├news_stock.ipynb │  │  │  │  ├<.ipynb_checkpoints> │  │  │  │  │  └news_stock-checkpoint.ipynb │  ├ │  │  ├A危azu-CTR-Prediction-LR.zip │  │  ├feature.search │  │  ├feature.search_ads │  │  ├feature_map.search_ads │  │  ├generate_train_feature_mapper.py │  │  ├generate_train_feature_reducer.py │  │  ├kaggle-A危azu-rank1.zip │  │  ├kaggle-A危azu-rank2.zip │  │  ├search_ads_feature.sample │  │  ├search_click_data.sample │  │  ├Spark-Criteo-CTR-Prediction.ipynb │  │  └xgb_ads.conf │  ├ │  │  ├ │  │  ├ │  │  │  ├news_stock.html │  │  │  ├news_stock_advanced.html │  │  │  ├search relevance.ipynb │  │  │  ├search relevance_advanced.ipynb │  │  │  ├search+relevance.html │  │  │  ├search+relevance_advanced.html │  │  │  ├<.ipynb_checkpoints> │  │  │  │  ├search relevance_advanced-checkpoint.ipynb │  │  │  │  └search relevance-checkpoint.ipynb │  ├ │  │  ├energy_forecasting_notebooks.zip │  │  └subway_prediction_notebook.zip │  ├ │  │  ├cat_dog.html │  │  ├char_rnn.html │  │  ├image_search.html │  │  ├Kaggle第06课:走起~深度学习.pdf │  │  ├Kaggle第06课:走起~深度学习.pptx │  │  ├news_stock_advanced.html │  │  ├word_rnn.html │  │  ├ │  │  │  ├chi_square.png │  │  │  └RGBHistogram.jpg │  │  ├<猫狗的数据> │  │  │  ├cats-vs-dogs.txt │  │  │  ├sample_submission.csv │  │  │  ├test.zip │  │  │  └train.zip │  ├ │  │  ├data.zip │  │  ├Kaggle event recommendation competition.ipynb │  │  ├kaggle-event-recommendation-rank1.zip │  │  └Rossmann_Store_Sales_competition.ipynb │  ├ │  │  └PPD_RiskControl_Competition.zip ├<课件> │  ├Kaggle第05课:能源预测与分配问题.pdf │  ├Kaggle第06课:走起~深度学习.pdf │  ├Kaggle第06课:走起~深度学习.pptx │  ├ │  │  ├Kaggle第01课:机器学习算法、工具与流程概述.pdf │  │  └分享的链接.txt │  ├ │  │  └Kaggle第02课:经济金融相关问题.pdf │  ├ │  │  ├kaggle-2014-criteo.pdf │  │  ├kaggle-A危azu.pdf │  │  ├predicting-clicks-facebook.pdf │  │  ├阿里妈妈:大数据下的广告排序技术及实践.pdf │  │  ├百度凤巢:DNN在凤巢CTR预估中的应用.pdf │  │  ├从FM到FFM.pdf │  │  ├第3课--排序与CTR预估.pdf │  │  ├京东电商广告和推荐系统的机器学习系统实践.pdf │  │  └腾讯广点通:效果广告中的机器学习技术.pdf │  ├ │  │  └Kaggle第四课.pdf │  ├ │  │  └第5课:能源预测与分配问题.pdf │  ├ │  │  └第7课:推荐与销量预测相关问题.pdf │  ├ │  │  ├第8课:金融风控问题.pdf │  │  └金融风控大赛解决方案.pdf 下载地址 链接 http://pan.baidu.com/s/1jI9WJiu 密码 vvlg 解压密码 www.santongit.com 0 收藏
给Kin打赏
2
5
10
20
50
¥0
您的当前余额:¥0
付费内容
付款金额
¥0
您的当前余额:¥0
0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
问题反馈
您没有权限发布私信
发起一个您感兴趣的内容
您没有权限发布内容,请购买会员或者提升权限。

忘记密码?找回